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Abstract. A general framework is presented for solving the impulsive oblique motion of a spherical body in close
proximity and below a free-surface. The fluid is considered to be impulsive and the flow as incompressible. The
irrotational flow field is deduced from a velocity potential. The full nonlinear problem is reduced to a sequence
of boundary-value problems by employing a small-time expansion technique. The mixed boundary conditions are
of a Dirichlet type on the undisturbed free-surface and of a Neumann type on the equilibrium spherical shape.
The solution is obtained by employing a Green’s function and the method of multipoles expansions. General
expressions, correct to each order in the small-time, are given for the free-surface deflections and the pressure
force experienced by the moving sphere.
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1. Introduction

The classical hydrodynamic problem of an impulsive motion of a rigid or deformable sub-
merged body near a free-surface is essentially nonlinear. The nonlinearity is introduced through
the free-surface and impermeable body boundary conditions, whereas the field equation is
taken as linear (Laplace’s equation) by assuming the fluid to be inviscid and the flow incom-
pressible. Unless the body is moving with a constant velocity in a direction parallel to the
undisturbed free-surface, the problem is generally time-dependent. In many cases, such un-
steady and nonlinear problems can be solved analytically by first reducing them to a sequence
of linear problems by applying the method of small-time expansion (e.g., Tyvand and Miloh
[1]). The resulting mixed boundary value problem is of an elliptic nature and involves a general
Neumann-type boundary condition applied on the deformable (instantaneous) body surface
and a Dirichlet-type boundary condition on the undisturbed free-surface. Closure is supplied
by enforcing a proper decay condition at infinity. The full solution of the flow problem then
involves the determination of the induced velocity-potentials, free-surface deflections and hy-
drodynamic pressure forces evaluated to each order (in the small-time asymptotics). Solving
the boundary-value problem, to order of say m, requires the successive solutions of all the
boundary value problems of a lower order, i.e., 0, 1, 2, · · · ,m − 1. The general procedure
is demonstrated in this paper for a spherical shape and can be thus considered as a first 3-D
attempt to extend similar 2-D problems of water-exit of cylindrical shapes approaching a free-
surface (Tyvand and Miloh [1], Moyo and Greenhow [2]). The time-dependence of the sphere
velocity, can be arbitrary and the velocity can be aligned in any direction (oblique motion).
The spherical shape is also allowed to undergo small surface deformations.

The solution of the time-dependent problem is carried out by formulating a corresponding
Green’s function and by using the method of multipoles expansion. Similar procedures have
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Figure 1. Definition of coordinate systems.

been employed by Srokosz [3] in the semi-bounded case and more recently by Wu [4] and
Ursell [5] in analyzing the linearized wave radiation/diffraction quasi-steady problem of a
submerged sphere in a channel (formulated in the frequency domain). A multipole expansion
for the potential of a point source expressed in terms of Legendre polynomials is well known.
The same procedure can in principle be also used for non-spherical quadratic shapes, such as
spheroids or ellipsoids as long as the image singularity system of an arbitrary potential flow
field within the body is known. The most general form for which a separable solution of the
Laplace equation is given and such an interior image system can be analytically obtained, is
the 3-D ellipsoid (Miloh [6]). However, as shown in the sequel, it is much simpler to demon-
strate the proposed general methodology for a spherical shape in arbitrary oblique motions
which still renders a non-symmetric 3-D problem.

2. Formulation of the problem

For this purpose let us consider a rigid or deformable sphere of equilibrium radius a whose
center lies instantaneously at depth h below a free-surface (Figure 1). In formulating the
boundary-value problem, it is convenient to define two sets of coordinate systems; a spherical
system (R, θ, α) with an origin at the sphere’s center and a cylindrical system (y, r, α) with
an origin on the undisturbed free-surface (y = 0), such that the center of the sphere is located
at (h, 0, 0). One can also use the submergence depth h as a reference length scale, thus the
dimensionless sphere radius is R = a/h = ε < 1 and its center is at (1, 0, 0).

According to the small-time expansion method (Tyvand and Miloh [1]), the velocity po-
tential φ, the free-surface elevation η and the hydrodynamic force F exerted on the body, can
all be expressed in an asymptotic series using the time t as a small parameter, i.e.:

(φ, η, F ) = δ(t)(0, 0, F (−1))+H(t)
[
(φ(0), η(0), F (0))+ t (φ(1), η(1), F (1))

+ (t2/2)(φ(2), η(2), F (2))+ . . . (t l/ l!)(φ(l), η(l), F (l))+ . . .
]
, l = 1, 2, . . . ,

(1)

where H(t) and δ(t) denote the Heaviside and delta generalized functions respectively. A
uniform convergence of (1) is assumed for t → 0+.

The general boundary-value problem for the velocity potential of order l, φ(l) is then given
by
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∇2φ(l) = 0; y ≥ 0 , (2)

φ(l)(0, r, α) = g(l)(r, α); y = 0 , (3)

∂φ(l)

∂R
(R, θ, α) = f (l)(θ, α); R = ε , (4)

| ∇φ(l) |→ 0; R → ∞ , (5)

where the functions f (l)(θ, α) and g(l)(r, α) are prescribed in terms of the velocity potentials
of order less than l. The specific expressions for these boundary conditions depend on the
type of impulsive motion (e.g., constant velocity, constant acceleration, etc.) as well as on
the deformation pattern of the spherical shape, and can be considered as given functions (see
discussion in Tyvand and Miloh [1]).

In the sequel we present a general method for calculating φ(l) in terms of the prescribed
values of f (l) and g(l) to any order l = 0, 1, 2, . . . . Also given is a scheme for evaluating
the free-surface deflections η(l) and pressure forces F (l). We consider the general case of an
oblique motion of a sphere towards or away from a free-surface. The interesting case of a
vertical motion, which preserves axial-symmetry with respect to y, is readily obtained as a
limiting case.

3. Solution of the boundary-value problem

In order to solve the general boundary value problem, posed in (2–5), we first define an
auxiliary potential function φ̄(l)m by,

φ̄(l)m (y, r) =
∫ ∞

0
kg̃(l)m (k) e−kyJm(kr) dk, (6)

where Jm is the Bessel function of order m,

φ̄(l)(y, r, α) =
∑
m

φ̄(l)m (y, r) cos(mα) , (7)

g(l)(r, α) =
∑
m

g(l)m (r) cos(mα) (8)

and

g̃(l)m (k) =
∫ ∞

0
rg(l)m (r)Jm(kr) dr . (9)

Without loss of generality, we choose to consider only even terms in α. Here, g(l)m and φ̄(l)m
are the Fourier coefficients of g(l) and φ̄(l) respectively, and g̃(l)m is the Hankel transform of
g(l)m . Substitution of (6) in (7) and application of (8–9) and the inverse Fourier-Bessel trans-
form, implies that φ̄(l)(y, r, α) is a potential function satisfying (2), (3) and (5). The Fourier
coefficients φ(l)m (y, r) of the full velocity potential φ(l)(y, r, α) are then expressed in terms of
the auxiliary potentials φ̄(l)m by using a standard multipole expansion, as

φ(l)m (y, r) = φ̄(l)m (y, r)−
∑
n

C(l)(m, n)G(m)
n (y, r)

εn+2

n + 1
, (10)
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where it is understood that m ≤ n and the Green’s function is defined as:

G(m)
n (y, r) = P (m)

n (cos θ)

Rn+1
− (−1)n

(n−m)!
∫ ∞

0
kn e−k(y+1)Jm(kr) dk . (11)

Here, C(l)(m, n) are coefficients to be determined and P (m)
n (cos θ are the Legendre polyno-

mials of order n and degree m. The Green’s function in (11) is harmonic in the lower half
space y ≥ 0; it is singular at the origin R = 0 and decays for R → ∞. Moreover, it can
also be shown (see Hobson [7, p. 176]) that it vanishes on the undisturbed free-surface, i.e.,
G(m)
n (0, r) = 0.
In order to determine the unknown coefficients C(l)(m, n) in (10), the Neumann boundary

condition (4) on the equilibrium spherical shape must be enforced. To do so, we first employ
the following relationship between the cylindrical and spherical coordinate systems (Figure 1),
i.e.: r = R sin θ, y = 1 +R cos θ , which can be verified by successive differentiations of the
corresponding expansion for m = 0:

e−kyJm(kr) = e−k
∞∑
n=m

(−kR)n
(n+m)!P

(m)
n (cos θ) . (12)

Substituting then (12) in (6) and (11) we have in the immediate vicinity of the sphere

φ̄(l)m (R, θ) =
∑
N=m

P
(m)
N (cos θ)

(N +m)! (−R)
N

∫ ∞

0
kN+1 e−kg(l)m (k) dk (13)

and

G(m)
n (R, θ) = P (m)

n (cos θ)

Rn+1
+

∑
N=m

(
−1

2

)N+n+1
(N + n)!

(n−m)!(N +m)! R
NP

(m)
N (cos θ) . (14)

Next, we take the partial derivatives of both φ̄(l)m and G(m)
n with respect to R evaluated at R = ε

and substitute (10) in (4). Making use of the orthogonality properties of the Legendre poly-
nomials then renders the following system of linear equations for the coefficients C(l)(m, n),
i.e.:

C(l)(m, n)−
∑
N=m

(
−ε

2

)N+n+1 n(N + n)!
(N + 1)(N −m)!(n+m)!C

(l)(m,N) = D(l)(m, n) , (15)

where

D(l)(m, n) ≡ f̃ (l)(m, n)+ n(−ε)n−1

(n+m)!
∫ ∞

0
kn+1 e−kg̃(l)m (k) dk . (16)

Here, f̃ (l) represents the coefficients of the Fourier-Legendre expansion of f (l)(θ, α), namely

f (l)(θ, α) =
∑
n

∑
m

f̃ (l)(m, n)P (m)
n (cos θ) cos(mα) . (17)

Thus, once the Fourier coefficients of the boundary conditions g(l) (3) and f (l) (4) are known,
the coefficients C(l) of the multipole expansion (10) are readily obtained by inverting the
infinite set (15).

In order to show that the infinite system (15) yields a unique solution for the coefficients
C(m, n), it is first shown following Ursell [5, p. 613] and by introducing an index shift N =
M +m, that the double series
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∑
M

∑
n

(
ε

3
)M+m+n+1 n(M +m+ n)!

(M +m+ 1)M!(n+m)!
is bounded for any m. In order to prove that it is enough to consider∑

M

∑
n

(
ε

2
)M+m+n+1 (M +m+ n)!

(M + 1)!(n+m− 1)! , (18)

since

M + 1

M +m+ 1
· n

n+m
< 1 for any (m, n)

Substituting again the following index shift K = M +m + n in (18) and using the binomial
theorem, we may show that (18) is bounded for ε < 1, since∑

K

∑
M

(
ε

2
)K+1 K!

(M + 1)!(K −M − 1)! = 1

2

∑
K

εK+1 ≤ ε

2(1 − ε)
. (19)

In order to complete the proof formally it is necessary to show that the double series
∑

n

∑
m |

D(m, n) | is also bounded. Using the definition of D(m, n) (16), and assuming that both the
Fourier-Bessel g̃m(k) and Fourier-Legendre f̃ (m, n) (17) coefficients are bounded and that
the corresponding series expansions absolutely converge, we may then readily show that the
double summation

∑
n

∑
m
n(n+1)!
(n+m)! ε

n+1 is bounded for ε < 1. Finally, following Ursell’s [5]
methodology, we can also show that the infinite series (10) is convergent in the whole flow
field.

To determine the free-surface deflection η(l)(r, α), it is necessary to evaluate the normal
derivative of φ(l) on y = 0. Thus, following (6), (10) and (11) one gets,

∂φ(l)(y, r)

∂y

∣∣∣
y=0

= −
∫ ∞

0
k2g̃(l)m (k)Jm(kr) dk

−2
∑
n

(−ερ)n+2

(
n−m+ 1

n+ 1

)
C(l)(m, n)P

(m)
n+1(ρ) ,

(20)

where ρ2 ≡ (1 + r2)−1. In deriving the second expression on the right-hand side of (20),
we have used the Ferrer’s integral definition of the Legendre polynomial (see for example,
Whittaker and Watson [8, p. 364] or Hobson [7, p. 176]), i.e.

P (m)
n (cos θ) = 1

(n−m)!
∫ ∞

0
e−λ cos θJm(λ sin θ)λn dλ , (21)

which is valid for positive (m, n) and cos θ > 0. It can be easily verified that the convergence
of (10) also implies the convergence of (20) since ρ ≤ 1.

4. Hydrodynamic force

The hydrodynamic pressure force experienced by the moving sphere can be found by em-
ploying the time-dependent Bernoulli equation by integrating the induced pressure over the
surface of the sphere. Thus, the lowest-order force (1), is given in terms of the zeroth-order
potential φ(0) as
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F(−1) =
∫
S

φ(0)n dS , (22)

where the fluid density is taken as unity and n denotes the inward normal to S. Higher-order
terms of the force can be found by including the quadratic Bernoulli terms, e.g.

F(l) =
∫
S

φ(l+1)n dS +
l∑
l1

el1

∫
S

∇φ(l1) · ∇φ(l−l1)n dS l = 0, 1, 2, . . . , (23)

with el1 = 1
2 for l1 = 0 or l1 = l and el1 = 1 otherwise.

In order to compute the surface integrals in (23), it is useful to expand the velocity potential
φ(l) in the neighborhood of the sphere in the following series of spherical harmonics;

φ(l)(R, θ, α) = −
∑
n

n∑
m

[A(l)(m, n)R−(n+1) + B(l)(m, n)Rn]P (m)
n (cos θ) cos(mα) . (24)

The coefficients A(l) and B(l) are related to the coefficients C(l) in (10) by

A(l)(m, n) = εn+2

n+ 1
C(l)(m, n) (25)

and

B(l)(m, n) =
∑
N=m

(−1

2
)N+n+1 (N + n)!

(n−m)!(N +m)!
εN+2

N + 1
C(l)(m,N)

+ 1

(n+m)!
∫ ∞

0
(−k)n+1e−kg(l)m (k) dk .

(26)

In deriving (25–26) use has been made of (13–14) together with (10).
Of particular interest for water exit/entry problems is the evaluation of the vertical force

representing the attraction/repulsion force component in a direction normal to the free-surface.
The latter can be expressed in a Lagally form as a sum of three integrals:

F (l) =
3∑
i=1

F
(l)
i =

∫
S

φ(l+1)(ε, θ, α) cos θ dθ +
l∑
l1

el1

∫
S

∂φ(l1)

∂y
f (l−l1)(θ, α) dS

−
l∑
l1

el1

∫
∀
∂φ(l1)

∂y
∇2φ(l−l1) d∀ .

(27)

The first term F
(l)
1 represents the contribution of the unsteady part. The second surface integral

F
(l)
2 , which involves the normal derivative of φ(l) on S and the third term F

(l)
3 represented by

the interior volume integral bounded by S, stem from the steady quadratic terms. Note that the
existence of interior multipoles within the sphere implies that the Laplacian is not null at the
location of these image singularities.

The first term F
(l)
1 in (27) can be readily obtained by using (24) and employing the orthog-

onality properties of the Legendre polynomials, as

F
(l−1)
1 = −4π

3
[A(l)(0, 1) + ε3B(l)(0, 1)] , (28)
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which is valid for l = 0, 1, 2, . . . and thus yielding also the normal component of F(−1) (22)
for l = 0.

To evaluate the second integral on th right-hand-side of (27), which involves the normal
derivative of the velocity potential on S, we use the following two identities for the interior
and exterior spherical harmonics (see Hobson [7, p. 134]):

∂

∂y

[
RnP (m)

n (cos θ) cos(mα)
] = (n+m)Rn−1P

(m)
n−1(cos θ) cos(mα) , (29)

∂

∂y

[
R−(n+1)P (m)

n (cos θ) cos(mα)
] = −(n−m+ 1)R−(n+2)P

(m)
n+1(cos θ) cos(mα) . (30)

Substitution of the above relationships in (27) leads to

F
(l)

2 =
l∑
l1

el1

∫
S

∂φ(l1)

∂y
f (l−l1)(θ, α) dS

= 2π
l∑
l1

∞∑
n

n∑
m

el1
(n+m)!
(n−m)!

[
n+m+ 1

2n+ 3
ε−nA(l1)(m, n)f̃ (l−l1) (m, n+ 1)

− n−m

2n − 1
εn+1B(l1)(m, n)f̃ (l−l1)(m, n− 1)

]
,

(31)

where f̃ (l1)(m, n) are the Fourier-Legendre coefficient of f (l1)(θ, α) defined in (17).
It should be noted that for the common Neumann problem of an impermeable surface,

the normal derivative on S vanishes (i.e. f (l) = 0) and thus (31) does not contribute to the
traditional form of the Lagally force (e.g., Landweber and Miloh [9]). However, for non-rigid
(deformable) surfaces or as a consequence of the geometric nonlinearity which arises in the
Lagrangian flow description of such motions (see, for example, Tyvand and Miloh [1]), this
term can be rather significant and should be definitely taken into account.

Finally, we obtain an analytic expression for the third term in (27) which represents the
classical ‘steady’ Lagally force resulting from the quadratic Bernoulli term. It can be ex-
pressed in terms of the various coefficients of the interior distribution of multipoles generating
the outer flow (see Landweber and Miloh [9]). For the sake of completeness, we provide
below a much simpler derivation of this term by taking advantage of some available theorems
for spherical harmonics. Firstly, we use the well-known expansion for an exterior harmonic
(using the terminology in Equation (2.4) of Miloh [10]) i.e.,

R−(n+1)P (m)
n (cos θ) cos(mα) = (−1)n

2(n −m)!
∂n−m

∂yn−m
[( ∂
∂x

+ i
∂

∂z
)m + c.c.] 1

R
, (32)

where θ = cos−1(y/R), α = tan−1(x/z), R2 = x2 + y2 + z2 and c.c. denotes complex
conjugates. Thus, since ∇2(−1/R) = 4πδ(x, y, z) where δ is a delta function, we get from
(24)

∇2φ(l1) = 2π
∑
n

n∑
m

A(l1)(m, n)
(−1)n

(n−m)!
[(

∂

∂x
+ i

∂

∂z

)m

+ c.c.

]
δ(x, y, z) . (33)

Since all multipoles are located at the origin, the theory of generalized functions when
applied to (24) and (33) implies that
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∀
∂φ(l1)

∂y
∇2φ(l2) d∀ = − lim

R→0
2π

∑
n

∑
m

∑
N

∑
M

A(l2)(m, n)B(l1)(M,N)

(−1)n

(n−m)!
∂n+1−m

∂yn+1−m

[(
∂

∂x
+ i

∂

∂z

)m

+ c.c.

] {
RNP

(M)
N (cos θ) cos(Mα)

}
. (34)

Lastly, we invoke Corollary 2 in Miloh [10] to (34) which results in

F
(l)
3 = −

l∑
l1

el1

∫
∀
∂φ(l1)

∂y
∇2φ(l−l1) d∀

= 2π
l∑
l1

∞∑
n

n∑
m

(el1/em)
(n+m+ 1)!
(n−m)! A(l−l1)(m, n)B(l1)(m, n+ 1) ,

(35)

where, similar to el1, em = 1
2 for m = 0 or m = n and em = 1 otherwise. This completes the

derivation of the expression for the pressure force acting on the moving sphere in terms of the
coefficients of the multipole expansions.

5. Example: spherical explosion near a free-surface

In order to demonstrate the preceeding analysis it may be instructive to apply it for a some-
what simplified practical case. Thus, let us consider the case of a spherical explosion near
an otherwise quiescent free-surface, The instantaneous explosion at t = 0+ with h denoting
the epicenter depth below the free-surface is modeled by imparting an impulsive unit radial
velocity to the fluid at a radial distance R = a. Under these conditions we wish to find
η(0), the impulsively induced free-surface deflection (of a Heavyside type) and F (−1), the
instantaneous hydrodynamic force exerted on the fictitious spherical shell R = a at t = 0+
(for definitions see Equation (1)). Using the notations of the general boundary value problem
defined in Equations. (2–5), the present case simply corresponds to l = 0 (i.e., zeroth order),
g(0)(r, α) = 0 and f (0)(θ, α) = 1. Since the problem is axisymmetric there is no dependence
on the azimuthal angle α and thus m = 0.

The zeroth-order free-surface elevation is then readily given by Equation (20),

η(0)(r) = − 2ε2

1 + r2

∞∑
n=0

( −ε√
1 + r2

)n

Pn+1

(
1√

1 + r2

)
C(n) , (36)

where the coefficients C(n) ≡ C(0)(0, n), are determined from the infinite set (15), under the
present simplifications, as

C(n)−
∞∑
N=0

(
−ε

2

)N+n+1 n(N + n)!
n!(N + 1)!C(N) = δ(N) , (37)

where δ(N) is the Kronecker delta function.
Once the coefficients C(n) are found, the impulsive force can be easily expressed in terms

of these coefficients, by substituting (25) and (26) in (28), leading by virtue of (37) to

F (−1) = −2πε3

3

[
C(1)+ ε2

2

∞∑
N=0

(
−ε

2

)N
C(N)

]
= −2πε3C(1) . (38)



A note on impulsive sphere motion beneath a free-surface 9

Table 1.

ε 4C1/ε
2 −η(0)(0)/2ε2

0·1000000 0·9998743 0·9997475

0·2000000 0·9989808 0·9979196

0·3000000 0·9964805 0·9926262

0·4000000 0·9913974 0·9812745

0·5000000 0·9825560 0·9600129

0·6000000 0·9685442 0·9229063

0·7000000 0·9477606 0·8609404

0·8000000 0·9186906 0·7624471

0·9000000 0·8806725 0·6251863

0·9500000 0·8586341 0·5560364

0·9800000 0·8446388 0·5205051

0·9900000 0·8398661 0·5091420

It is interesting to note that, since ε < 1, the infinite system can be inverted so as to yield
an asymptotic recurrence type solution to any order for C(n), thus C(0) = 1 and for n ≥ 1,
one gets

C(n) = n
(
−ε

2

)n+1 [
1 +

(
−ε

2

)3 ∞∑
n1=0

(
−ε

2

)2n1 n1 + 1

n1 + 2

(
n1 + n+ 1

n

)
[1+

(
−ε

2

)3 ∞∑
n2=0

(
−ε

2

)2n2 n2 + 1

n2 + 2

(
n2 + n1 + 1

n1

)
[1 + . . .

] (39)

where
(
n

m

) ≡ n!
m!(n−m)! , is the binomial coefficient.

It follows then that the impulsive free-surface deflection (step-function) to leading-order is
determined from (36) as

η(0)(r) = − 2ε2

(1 + r2)3/2
+ 0(ε3) (40)

and the impulsive force (delta-function) is found to leading-order from (38) and (39) as

F̄ (−1) = −πε5

2
+ 0(ε8) (41)

The infinite set (37) is solved first for the coefficients C(n) for different values of ε. For
ε = 0·99 the series is truncated after 40 terms (N = 40) to guarantee relative error of less
than 10−6. The coefficients exhibit a fast decay with N with an alternating sign. In Table 1
we present the dependence of 4C(1)/ε2, i.e. the ratio of C(1) to its leading-order asymptotic
value ε2

4 (39) with respect to ε. Also given in the same Table are the values of η(0)(0)/2ε2

calculated from (36). The impulsive force F (−1) is then determined from (38) in terms of
C(1). It is seen that for ε < 0·6, one can use the zeroth-order solutions (40) and (41) with
an error of less than 10%. Plots of free-surface elevations (36) are depicted in Figure 2 as a
function of the radial distance r along the free-surface for different values of ε. Clearly, the
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Figure 2. The variation of the zeroth-order elevation (36) with the radial distance as a function of ε.

Figure 3. The ratio k(r) between the leading order elevation (36) and its asymptotic value (40).

larger ε is, the larger is the peak/dip of the free-surface. It is also verified that for ε < 0·6
the free-surface can be computed by its asymptotic expression (40) with an error of less than
5 percent. For this purpose we present Figure 3 depicting the ratio k(r) between η(0)(r) (36)
and (40) as a function of r for 0·2 < ε < 0·99.

6. Concluding remarks

The general nonlinear and time-dependent hydrodynamic problem involving a deformable or
rigid sphere moving impulsively near a free-surface is reduced to a sequence of linear mixed
non-homogeneous boundary-value problems by using the method of small-time expansion.
The general boundary-value problem for the velocity potential φ(l) of order l, is given by
(2–5). Here the non-homogeneous terms f (l)(θ, α) and g(l)(r, α) are generally prescribed
depending on the particular sphere motion and its surface deformation. A multipole expansion
(10) is assumed for φ(l) and the coefficients C(l)(m, n) are found by inverting the linear set



A note on impulsive sphere motion beneath a free-surface 11

of equations (15) depending on f (l) and g(l) through the non-homogeneous terms. It is also
proven that this infinite series has a unique solution and that the corresponding expansion for
the velocity potential is absolutely convergent. The free-surface deflection can then be directly
calculated to arbitrary order from (20). The pressure force acting on the moving deformable
sphere is found by applying the Bernoulli sum (23). The expression for the vertical force, for
example, consists of three terms (27). The first is the so-called unsteady Lagally term given in
(28). The other two terms result from the quadratic Bernoulli term. One of them, (21), does not
appear in the traditional derivation of the Lagally theorem since in the present case f (l) �= 0.
The last term (35) is the classical steady Lagally term for which we present here a simple and
direct proof by taking advantage of some special properties of spherical harmonics.
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